DS3231 DIGITAL CLOCK LED MATRIX

The code can be downloaded from :

https://github.com/triantara/ARDUINO-TRIANTARA/blob/main/DIGITAL_CLOCK_MATRIX.zip

//include libraries:

#include “LedControl.h”

#include <FontLEDClock.h> // Font library

#include <Wire.h> // DS1307 clock

#include “RTClib.h” // DS1307 clock

#include <Button.h> // Button library by Alexander Brevig

// Setup LED Matrix

// pin 12 is connected to the DataIn on the display

// pin 11 is connected to the CLK on the display

// pin 10 is connected to LOAD on the display

LedControl lc = LedControl(12, 11, 10, 4); //sets the 3 pins as 12, 11 & 10 and then sets 4 displays (max is 8 displays)

//global variables

byte intensity = 5; // Default intensity/brightness (0-15)

byte clock_mode = 0; // Default clock mode. Default = 0 (basic_mode)

bool random_mode = 0; // Define random mode – changes the display type every few hours. Default = 0 (off)

byte old_mode = clock_mode; // Stores the previous clock mode, so if we go to date or whatever, we know what mode to go back to after.

bool ampm = 0; // Define 12 or 24 hour time. 0 = 24 hour. 1 = 12 hour

byte change_mode_time = 0; // Holds hour when clock mode will next change if in random mode.

unsigned long delaytime = 500; // We always wait a bit between updates of the display

int rtc[7]; // Holds real time clock output

char days[7][4] = {

“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”

}; //day array – used in slide, basic_mode and jumble modes (The DS1307 outputs 1-7 values for day of week)

char daysfull[7][9] = {

“Sunday”, “Monday”, “Tuesday”, “Wed”, “Thursday”, “Friday”, “Saturday”

};

char suffix[4][3] = {

“st”, “nd”, “rd”, “th”

}; //date suffix array, used in slide, basic_mode and jumble modes. e,g, 1st 2nd …

//define constants

#define NUM_DISPLAY_MODES 3 // Number display modes (conting zero as the first mode)

#define NUM_SETTINGS_MODES 4 // Number settings modes = 6 (conting zero as the first mode)

#define SLIDE_DELAY 20 // The time in milliseconds for the slide effect per character in slide mode. Make this higher for a slower effect

#define cls clear_display // Clear display

RTC_DS3231 ds3231; // Create RTC object

Button buttonA = Button(2, BUTTON_PULLUP); // Setup button A (using button library)

Button buttonB = Button(3, BUTTON_PULLUP); // Setup button B (using button library)

void setup() {

digitalWrite(2, HIGH); // turn on pullup resistor for button on pin 2

digitalWrite(3, HIGH); // turn on pullup resistor for button on pin 3

digitalWrite(4, HIGH); // turn on pullup resistor for button on pin 4

Serial.begin(9600); //start serial

//initialize the 4 matrix panels

//we have already set the number of devices when we created the LedControl

int devices = lc.getDeviceCount();

//we have to init all devices in a loop

for (int address = 0; address < devices; address++) {

/*The MAX72XX is in power-saving mode on startup*/

lc.shutdown(address, false);

/* Set the brightness to a medium values */

lc.setIntensity(address, intensity);

/* and clear the display */

lc.clearDisplay(address);

}

//Setup DS1307 RTC

#ifdef AVR

Wire.begin();

#else

Wire1.begin(); // Shield I2C pins connect to alt I2C bus on Arduino

#endif

ds3231.begin(); //start RTC Clock

if (! ds3231.begin()) {

Serial.println(“RTC is NOT running!”);

while (1);

//ds3231.adjust(DateTime(__DATE__, __TIME__)); // sets the RTC to the date & time this sketch was compiled

}

if (ds3231.lostPower()) {

//Sets the code compilation time to RTC DS3231

ds3231.adjust(DateTime(F(__DATE__), F(__TIME__)));

}

//Show software version & hello message

//printver();

//enable red led

//digitalWrite(13, HIGH);

}

void loop() {

//run the clock with whatever mode is set by clock_mode – the default is set at top of code.

switch (clock_mode){

case 0:

basic_mode();

break;

case 1:

small_mode();

break;

case 2:

slide();

break;

case 3:

word_clock();

break;

case 4:

setup_menu();

break;

}

}

//plot a point on the display

void plot (byte x, byte y, byte val) {

//select which matrix depending on the x coord

byte address;

if (x >= 0 && x <= 7) {

address = 3;

}

if (x >= 8 && x <= 15) {

address = 2;

x = x – 8;

}

if (x >= 16 && x <= 23) {

address = 1;

x = x – 16;

}

if (x >= 24 && x <= 31) {

address = 0;

x = x – 24;

}

if (val == 1) {

lc.setLed(address, y, x, true);

} else {

lc.setLed(address, y, x, false);

}

}

//clear screen

void clear_display() {

for (byte address = 0; address < 4; address++) {

lc.clearDisplay(address);

}

}

//fade screen down

void fade_down() {

//fade from global intensity to 1

for (byte i = intensity; i > 0; i–) {

for (byte address = 0; address < 4; address++) {

lc.setIntensity(address, i);

}

delay(30); //change this to change fade down speed

}

clear_display(); //clear display completely (off)

//reset intentsity to global val

for (byte address = 0; address < 4; address++) {

lc.setIntensity(address, intensity);

}

}

//power up led test & display software version number

void printver() {

byte i = 0;

char ver_a[9] = “Vers 1.0”;

char ver_b[9] = ” Hello! “;

//test all leds.

for (byte x = 0; x <= 31; x++) {

for (byte y = 0; y <= 7; y++) {

plot(x, y, 1);

}

}

delay(500);

fade_down();

while (ver_a[i]) {

puttinychar((i * 4), 1, ver_a[i]);

delay(35);

i++;

}

delay(700);

fade_down();

i = 0;

while (ver_b[i]) {

puttinychar((i * 4), 1, ver_b[i]);

delay(35);

i++;

}

delay(700);

fade_down();

}

// puttinychar

// Copy a 3×5 character glyph from the myfont data structure to display memory, with its upper left at the given coordinate

// This is unoptimized and simply uses plot() to draw each dot.

void puttinychar(byte x, byte y, char c)

{

byte dots;

if (c >= ‘A’ && c <= ‘Z’ || (c >= ‘a’ && c <= ‘z’) ) {

c &= 0x1F; // A-Z maps to 1-26

}

else if (c >= ‘0’ && c <= ‘9’) {

c = (c – ‘0’) + 32;

}

else if (c == ‘ ‘) {

c = 0; // space

}

else if (c == ‘.’) {

c = 27; // full stop

}

else if (c == ‘:’) {

c = 28; // colon

}

else if (c == ‘\”) {

c = 29; // single quote mark

}

else if (c == ‘!’) {

c = 30; // single quote mark

}

else if (c == ‘?’) {

c = 31; // single quote mark

}

for (byte col = 0; col < 3; col++) {

dots = pgm_read_byte_near(&mytinyfont[c][col]);

for (char row = 0; row < 5; row++) {

if (dots & (16 >> row))

plot(x + col, y + row, 1);

else

plot(x + col, y + row, 0);

}

}

}

void putnormalchar(byte x, byte y, char c)

{

byte dots;

// if (c >= ‘A’ && c <= ‘Z’ || (c >= ‘a’ && c <= ‘z’) ) {

// c &= 0x1F; // A-Z maps to 1-26

// }

if (c >= ‘A’ && c <= ‘Z’ ) {

c &= 0x1F; // A-Z maps to 1-26

}

else if (c >= ‘a’ && c <= ‘z’) {

c = (c – ‘a’) + 41; // A-Z maps to 41-67

}

else if (c >= ‘0’ && c <= ‘9’) {

c = (c – ‘0’) + 31;

}

else if (c == ‘ ‘) {

c = 0; // space

}

else if (c == ‘.’) {

c = 27; // full stop

}

else if (c == ‘\”) {

c = 28; // single quote mark

}

else if (c == ‘:’) {

c = 29; // clock_mode selector arrow

}

else if (c == ‘>’) {

c = 30; // clock_mode selector arrow

}

else if (c >= -80 && c <= -67) {

c *= -1;

}

for (char col = 0; col < 5; col++) {

dots = pgm_read_byte_near(&myfont[c][col]);

for (char row = 0; row < 7; row++) {

//check coords are on screen before trying to plot

//if ((x >= 0) && (x <= 31) && (y >= 0) && (y <= 7)){

if (dots & (64 >> row)) { // only 7 rows.

plot(x + col, y + row, 1);

} else {

plot(x + col, y + row, 0);

}

//}

}

}

}

//small_mode

//show the time in small 3×5 characters with seconds display

void small_mode() {

char textchar[8]; // the 16 characters on the display

byte mins = 100; //mins

byte secs = rtc[0]; //seconds

byte old_secs = secs; //holds old seconds value – from last time seconds were updated o display – used to check if seconds have changed

cls();

//run clock main loop as long as run_mode returns true

while (run_mode()) {

get_time();

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

return;

}

//if secs changed then update them on the display

secs = rtc[0];

if (secs != old_secs) {

//secs

char buffer[3];

itoa(secs, buffer, 10);

//fix – as otherwise if num has leading zero, e.g. “03” secs, itoa coverts this to chars with space “3 “.

if (secs < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

puttinychar( 20, 1, ‘:’); //seconds colon

puttinychar( 24, 1, buffer[0]); //seconds

puttinychar( 28, 1, buffer[1]); //seconds

old_secs = secs;

}

//if minute changes change time

if (mins != rtc[1]) {

//reset these for comparison next time

mins = rtc[1];

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

//byte dow = rtc[3]; // the DS1307 outputs 0 – 6 where 0 = Sunday0 – 6 where 0 = Sunday.

//byte date = rtc[4];

//set characters

char buffer[3];

itoa(hours, buffer, 10);

//fix – as otherwise if num has leading zero, e.g. “03” hours, itoa coverts this to chars with space “3 “.

if (hours < 10) {

buffer[1] = buffer[0];

//if we are in 12 hour mode blank the leading zero.

if (ampm) {

buffer[0] = ‘ ‘;

}

else {

buffer[0] = ‘0’;

}

}

//set hours chars

textchar[0] = buffer[0];

textchar[1] = buffer[1];

textchar[2] = ‘:’;

itoa (mins, buffer, 10);

if (mins < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//set mins characters

textchar[3] = buffer[0];

textchar[4] = buffer[1];

//do seconds

textchar[5] = ‘:’;

buffer[3];

secs = rtc[0];

itoa(secs, buffer, 10);

//fix – as otherwise if num has leading zero, e.g. “03” secs, itoa coverts this to chars with space “3 “.

if (secs < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//set seconds

textchar[6] = buffer[0];

textchar[7] = buffer[1];

byte x = 0;

byte y = 0;

//print each char

for (byte x = 0; x < 6 ; x++) {

puttinychar( x * 4, 1, textchar[x]);

}

}

delay(50);

}

fade_down();

}

// basic_mode()

// show the time in 5×7 characters

void basic_mode()

{

cls();

char buffer[3]; //for int to char conversion to turn rtc values into chars we can print on screen

byte offset = 0; //used to offset the x postition of the digits and centre the display when we are in 12 hour mode and the clock shows only 3 digits. e.g. 3:21

byte x, y; //used to draw a clear box over the left hand “1” of the display when we roll from 12:59 -> 1:00am in 12 hour mode.

//do 12/24 hour conversion if ampm set to 1

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

//do offset conversion

if (ampm && hours < 10) {

offset = 2;

}

//set the next minute we show the date at

//set_next_date();

// initially set mins to value 100 – so it wll never equal rtc[1] on the first loop of the clock, meaning we draw the clock display when we enter the function

byte secs = 100;

byte mins = 100;

int count = 0;

//run clock main loop as long as run_mode returns true

while (run_mode()) {

//get the time from the clock chip

get_time();

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

return;

}

//check whether it’s time to automatically display the date

//check_show_date();

//draw the flashing : as on if the secs have changed.

if (secs != rtc[0]) {

//update secs with new value

secs = rtc[0];

//draw :

plot (15 – offset, 2, 1); //top point

plot (15 – offset, 5, 1); //bottom point

count = 400;

}

//if count has run out, turn off the :

if (count == 0) {

plot (15 – offset, 2, 0); //top point

plot (15 – offset, 5, 0); //bottom point

}

else {

count–;

}

//re draw the display if button pressed or if mins != rtc[1] i.e. if the time has changed from what we had stored in mins, (also trigggered on first entering function when mins is 100)

if (mins != rtc[1]) {

//update mins and hours with the new values

mins = rtc[1];

hours = rtc[2];

//adjust hours of ampm set to 12 hour mode

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

itoa(hours, buffer, 10);

//if hours < 10 the num e.g. “3” hours, itoa coverts this to chars with space “3 ” which we dont want

if (hours < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//print hours

//if we in 12 hour mode and hours < 10, then don’t print the leading zero, and set the offset so we centre the display with 3 digits.

if (ampm && hours < 10) {

offset = 2;

//if the time is 1:00am clear the entire display as the offset changes at this time and we need to blank out the old 12:59

if ((hours == 1 && mins == 0) ) {

cls();

}

}

else {

//else no offset and print hours tens digit

offset = 0;

//if the time is 10:00am clear the entire display as the offset changes at this time and we need to blank out the old 9:59

if (hours == 10 && mins == 0) {

cls();

}

putnormalchar(1, 0, buffer[0]);

}

//print hours ones digit

putnormalchar(7 – offset, 0, buffer[1]);

//print mins

//add leading zero if mins < 10

itoa (mins, buffer, 10);

if (mins < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//print mins tens and ones digits

putnormalchar(19 – offset, 0, buffer[0]);

putnormalchar(25 – offset, 0, buffer[1]);

}

}

fade_down();

}

//like basic_mode but with slide effect

void slide() {

byte digits_old[4] = {99, 99, 99, 99}; //old values we store time in. Set to somthing that will never match the time initially so all digits get drawn wnen the mode starts

byte digits_new[4]; //new digits time will slide to reveal

byte digits_x_pos[4] = {25, 19, 7, 1}; //x pos for which to draw each digit at

char old_char[2]; //used when we use itoa to transpose the current digit (type byte) into a char to pass to the animation function

char new_char[2]; //used when we use itoa to transpose the new digit (type byte) into a char to pass to the animation function

//old_chars – stores the 5 day and date suffix chars on the display. e.g. “mon” and “st”. We feed these into the slide animation as the current char when these chars are updated.

//We sent them as A initially, which are used when the clocl enters the mode and no last chars are stored.

//char old_chars[6] = “AAAAA”;

//plot the clock colon on the display

cls();

putnormalchar( 13, 0, ‘:’);

byte old_secs = rtc[0]; //store seconds in old_secs. We compare secs and old secs. WHen they are different we redraw the display

//run clock main loop as long as run_mode returns true

while (run_mode()) {

get_time();

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

return;

}

//if secs have changed then update the display

if (rtc[0] != old_secs) {

old_secs = rtc[0];

//do 12/24 hour conversion if ampm set to 1

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

//split all date and time into individual digits – stick in digits_new array

//rtc[0] = secs //array pos and digit stored

//digits_new[0] = (rtc[0]%10); //0 – secs ones

//digits_new[1] = ((rtc[0]/10)%10); //1 – secs tens

//rtc[1] = mins

digits_new[0] = (rtc[1] % 10); //2 – mins ones

digits_new[1] = ((rtc[1] / 10) % 10); //3 – mins tens

//rtc[2] = hours

digits_new[2] = (hours % 10); //4 – hour ones

digits_new[3] = ((hours / 10) % 10); //5 – hour tens

//rtc[4] = date

//digits_new[6] = (rtc[4]%10); //6 – date ones

//digits_new[7] = ((rtc[4]/10)%10); //7 – date tens

//draw initial screen of all chars. After this we just draw the changes.

//compare digits 0 to 3 (mins and hours)

for (byte i = 0; i <= 3; i++) {

//see if digit has changed…

if (digits_old[i] != digits_new[i]) {

//run 9 step animation sequence for each in turn

for (byte seq = 0; seq <= 8 ; seq++) {

//convert digit to string

itoa(digits_old[i], old_char, 10);

itoa(digits_new[i], new_char, 10);

//if set to 12 hour mode and we’re on digit 2 (hours tens mode) then check to see if this is a zero. If it is, blank it instead so we get 2.00pm not 02.00pm

if (ampm && i == 3) {

if (digits_new[3] == 0) {

new_char[0] = ‘ ‘;

}

if (digits_old[3] == 0) {

old_char[0] = ‘ ‘;

}

}

//draw the animation frame for each digit

slideanim(digits_x_pos[i], 0, seq, old_char[0], new_char[0]);

delay(SLIDE_DELAY);

}

}

}

/*

//compare date digit 6 (ones) and (7) tens – if either of these change we need to update the date line. We compare date tens as say from Jan 31 -> Feb 01 then ones digit doesn’t change

if ((digits_old[6] != digits_new[6]) || (digits_old[7] != digits_new[7])) {

//change the day shown. Loop below goes through each of the 3 chars in turn e.g. “MON”

for (byte day_char = 0; day_char <=2 ; day_char++){

//run the anim sequence for each char

for (byte seq = 0; seq <=8 ; seq++){

//the day (0 – 6) Read this number into the days char array. the seconds number in the array 0-2 gets the 3 chars of the day name, e.g. m o n

slideanim(6*day_char,8,seq,old_chars[day_char],days[rtc[3]][day_char]); //6 x day_char gives us the x pos for the char

delay(SLIDE_DELAY);

}

//save the old day chars into the old_chars array at array pos 0-2. We use this next time we change the day and feed it to the animation as the current char. The updated char is fed in as the new char.

old_chars[day_char] = days[rtc[3]][day_char];

}

//change the date tens digit (if needed) and ones digit. (the date ones digit wil alwaus change, but putting this in the ‘if’ loop makes it a bit neater code wise.)

for (byte i = 7; i >= 6; i–){

if (digits_old[i] != digits_new[i]) {

for (byte seq = 0; seq <=8 ; seq++){

itoa(digits_old[i],old_char,10);

itoa(digits_new[i],new_char,10);

slideanim(digits_x_pos[i],8,seq,old_char[0],new_char[0]);

delay(SLIDE_DELAY);

}

}

}

//print the day suffix “nd” “rd” “th” etc. First work out date 2 letter suffix – eg st, nd, rd, th

byte s = 3; //the pos to read our suffix array from.

byte date = rtc[4];

if(date == 1 || date == 21 || date == 31) {

s = 0;

}

else if (date == 2 || date == 22) {

s = 1;

}

else if (date == 3 || date == 23) {

s = 2;

}

for (byte suffix_char = 0; suffix_char <=1 ; suffix_char++){

for (byte seq = 0; seq <=8 ; seq++){

slideanim((suffix_char*6)+36,8,seq,old_chars[suffix_char+3],suffix[s][suffix_char]); // we pass in the old_char array char as the current char and the suffix array as the new char

delay(SLIDE_DELAY);

}

//save the suffic char in the old chars array at array pos 3 and 5. We use these chars next time we change the suffix and feed it to the animation as the current char. The updated char is fed in as the new char.

old_chars[suffix_char+3] = suffix[s][suffix_char];

}

}//end do date line

*/

//save digita array tol old for comparison next loop

for (byte i = 0; i <= 3; i++) {

digits_old[i] = digits_new[i];

}

}//secs/oldsecs

}//while loop

fade_down();

}

//called by slide

//this draws the animation of one char sliding on and the other sliding off. There are 8 steps in the animation, we call the function to draw one of the steps from 0-7

//inputs are are char x and y, animation frame sequence (0-7) and the current and new chars being drawn.

void slideanim(byte x, byte y, byte sequence, char current_c, char new_c) {

// To slide one char off and another on we need 9 steps or frames in sequence…

// seq# 0123456 <-rows of the display

// | |||||||

// seq0 0123456 START – all rows of the display 0-6 show the current characters rows 0-6

// seq1 012345 current char moves down one row on the display. We only see it’s rows 0-5. There are at display positions 1-6 There is a blank row inserted at the top

// seq2 6 01234 current char moves down 2 rows. we now only see rows 0-4 at display rows 2-6 on the display. Row 1 of the display is blank. Row 0 shows row 6 of the new char

// seq3 56 0123

// seq4 456 012 half old / half new char

// seq5 3456 01

// seq6 23456 0

// seq7 123456

// seq8 0123456 END – all rows show the new char

//from above we can see…

//currentchar runs 0-6 then 0-5 then 0-4 all the way to 0. starting Y position increases by 1 row each time.

//new char runs 6 then 5-6 then 4-6 then 3-6. starting Y position increases by 1 row each time.

//if sequence number is below 7, we need to draw the current char

if (sequence < 7) {

byte dots;

// if (current_c >= ‘A’ && || (current_c >= ‘a’ && current_c <= ‘z’) ) {

// current_c &= 0x1F; // A-Z maps to 1-26

// }

if (current_c >= ‘A’ && current_c <= ‘Z’ ) {

current_c &= 0x1F; // A-Z maps to 1-26

}

else if (current_c >= ‘a’ && current_c <= ‘z’) {

current_c = (current_c – ‘a’) + 41; // A-Z maps to 41-67

}

else if (current_c >= ‘0’ && current_c <= ‘9’) {

current_c = (current_c – ‘0’) + 31;

}

else if (current_c == ‘ ‘) {

current_c = 0; // space

}

else if (current_c == ‘.’) {

current_c = 27; // full stop

}

else if (current_c == ‘\”) {

current_c = 28; // single quote mark

}

else if (current_c == ‘:’) {

current_c = 29; //colon

}

else if (current_c == ‘>’) {

current_c = 30; // clock_mode selector arrow

}

byte curr_char_row_max = 7 – sequence; //the maximum number of rows to draw is 6 – sequence number

byte start_y = sequence; //y position to start at – is same as sequence number. We inc this each loop

//plot each row up to row maximum (calculated from sequence number)

for (byte curr_char_row = 0; curr_char_row <= curr_char_row_max; curr_char_row++) {

for (byte col = 0; col < 5; col++) {

dots = pgm_read_byte_near(&myfont[current_c][col]);

if (dots & (64 >> curr_char_row))

plot(x + col, y + start_y, 1); //plot led on

else

plot(x + col, y + start_y, 0); //else plot led off

}

start_y++;//add one to y so we draw next row one down

}

}

//draw a blank line between the characters if sequence is between 1 and 7. If we don’t do this we get the remnants of the current chars last position left on the display

if (sequence >= 1 && sequence <= 8) {

for (byte col = 0; col < 5; col++) {

plot(x + col, y + (sequence – 1), 0); //the y position to draw the line is equivalent to the sequence number – 1

}

}

//if sequence is above 2, we also need to start drawing the new char

if (sequence >= 2) {

//work out char

byte dots;

//if (new_c >= ‘A’ && new_c <= ‘Z’ || (new_c >= ‘a’ && new_c <= ‘z’) ) {

// new_c &= 0x1F; // A-Z maps to 1-26

//}

if (new_c >= ‘A’ && new_c <= ‘Z’ ) {

new_c &= 0x1F; // A-Z maps to 1-26

}

else if (new_c >= ‘a’ && new_c <= ‘z’) {

new_c = (new_c – ‘a’) + 41; // A-Z maps to 41-67

}

else if (new_c >= ‘0’ && new_c <= ‘9’) {

new_c = (new_c – ‘0’) + 31;

}

else if (new_c == ‘ ‘) {

new_c = 0; // space

}

else if (new_c == ‘.’) {

new_c = 27; // full stop

}

else if (new_c == ‘\”) {

new_c = 28; // single quote mark

}

else if (new_c == ‘:’) {

new_c = 29; // clock_mode selector arrow

}

else if (new_c == ‘>’) {

new_c = 30; // clock_mode selector arrow

}

byte newcharrowmin = 6 – (sequence – 2); //minimumm row num to draw for new char – this generates an output of 6 to 0 when fed sequence numbers 2-8. This is the minimum row to draw for the new char

byte start_y = 0; //y position to start at – is same as sequence number. we inc it each row

//plot each row up from row minimum (calculated by sequence number) up to 6

for (byte newcharrow = newcharrowmin; newcharrow <= 6; newcharrow++) {

for (byte col = 0; col < 5; col++) {

dots = pgm_read_byte_near(&myfont[new_c][col]);

if (dots & (64 >> newcharrow))

plot(x + col, y + start_y, 1); //plot led on

else

plot(x + col, y + start_y, 0); //else plot led off

}

start_y++;//add one to y so we draw next row one down

}

}

}

//print a clock using words rather than numbers

void word_clock() {

cls();

char numbers[19][10] = {

“one”, “two”, “three”, “four”, “five”, “six”, “seven”, “eight”, “nine”, “ten”,

“eleven”, “twelve”, “thirteen”, “fourteen”, “fifteen”, “sixteen”, “seventeen”, “eighteen”, “nineteen”

};

char numberstens[5][7] = {

“ten”, “twenty”, “thirty”, “forty”, “fifty”

};

//potentially 3 lines to display

char str_a[8];

char str_b[8];

char str_c[8];

//byte hours_y, mins_y; //hours and mins and positions for hours and mins lines

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

get_time(); //get the time from the clock chip

byte old_mins = 100; //store mins in old_mins. We compare mins and old mins & when they are different we redraw the display. Set this to 100 initially so display is drawn when mode starts.

byte mins;

//run clock main loop as long as run_mode returns true

while (run_mode()) {

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

get_time(); //get the time from the clock chip

mins = rtc[1]; //get mins

//if mins is different from old_mins – redraw display

if (mins != old_mins) {

//update old_mins with current mins value

old_mins = mins;

//reset these for comparison next time

mins = rtc[1];

hours = rtc[2];

//make hours into 12 hour format

if (hours > 12) {

hours = hours – 12;

}

if (hours == 0) {

hours = 12;

}

//split mins value up into two separate digits

int minsdigit = rtc[1] % 10;

byte minsdigitten = (rtc[1] / 10) % 10;

//if mins <= 10 , then top line has to read “minsdigti past” and bottom line reads hours

if (mins < 10) {

strcpy (str_a, numbers[minsdigit – 1]);

strcpy (str_b, “PAST”);

strcpy (str_c, numbers[hours – 1]);

}

//if mins = 10, cant use minsdigit as above, so soecial case to print 10 past /n hour.

if (mins == 10) {

strcpy (str_a, numbers[9]);

strcpy (str_b, ” PAST”);

strcpy (str_c, numbers[hours – 1]);

}

//if time is not on the hour – i.e. both mins digits are not zero,

//then make first line read “hours” and 2 & 3rd lines read “minstens” “mins” e.g. “three /n twenty /n one”

else if (minsdigitten != 0 && minsdigit != 0 ) {

strcpy (str_a, numbers[hours – 1]);

//if mins is in the teens, use teens from the numbers array for the 2nd line, e.g. “fifteen”

//if (mins >= 11 && mins <= 19) {

if (mins <= 19) {

strcpy (str_b, numbers[mins – 1]);

}

else {

strcpy (str_b, numberstens[minsdigitten – 1]);

strcpy (str_c, numbers[minsdigit – 1]);

}

}

// if mins digit is zero, don’t print it. read read “hours” “minstens” e.g. “three /n twenty”

else if (minsdigitten != 0 && minsdigit == 0 ) {

strcpy (str_a, numbers[hours – 1]);

strcpy (str_b, numberstens[minsdigitten – 1]);

strcpy (str_c, “”);

}

//if both mins are zero, i.e. it is on the hour, the top line reads “hours” and bottom line reads “o’clock”

else if (minsdigitten == 0 && minsdigit == 0 ) {

strcpy (str_a, numbers[hours – 1]);

strcpy (str_b, “O’CLOCK”);

strcpy (str_c, “”);

}

}//end worknig out time

//run in a loop

//print line a “twelve”

byte len = 0;

while (str_a[len]) {

len++;

}; //get length of message

byte offset_top = (31 – ((len – 1) * 4)) / 2; //

//plot hours line

byte i = 0;

while (str_a[i]) {

puttinychar((i * 4) + offset_top, 1, str_a[i]);

i++;

}

//hold display but check for button presses

int counter = 1000;

while (counter > 0){

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

fade_down();

//print line b

len = 0;

while (str_b[len]) {

len++;

}; //get length of message

offset_top = (31 – ((len – 1) * 4)) / 2;

i = 0;

while (str_b[i]) {

puttinychar((i * 4) + offset_top, 1, str_b[i]);

i++;

}

//hold display but check for button presses

counter = 1000;

while (counter > 0){

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

fade_down();

//print line c if there.

len = 0;

while (str_c[len]) {

len++;

}; //get length of message

offset_top = (31 – ((len – 1) * 4)) / 2;

i = 0;

while (str_c[i]) {

puttinychar((i * 4) + offset_top, 1, str_c[i]);

i++;

}

counter = 1000;//include libraries:

#include “LedControl.h”

#include <FontLEDClock.h> // Font library

#include <Wire.h> // DS1307 clock

#include “RTClib.h” // DS1307 clock

#include <Button.h> // Button library by Alexander Brevig

// Setup LED Matrix

// pin 12 is connected to the DataIn on the display

// pin 11 is connected to the CLK on the display

// pin 10 is connected to LOAD on the display

LedControl lc = LedControl(12, 11, 10, 4); //sets the 3 pins as 12, 11 & 10 and then sets 4 displays (max is 8 displays)

//global variables

byte intensity = 5; // Default intensity/brightness (0-15)

byte clock_mode = 0; // Default clock mode. Default = 0 (basic_mode)

bool random_mode = 0; // Define random mode – changes the display type every few hours. Default = 0 (off)

byte old_mode = clock_mode; // Stores the previous clock mode, so if we go to date or whatever, we know what mode to go back to after.

bool ampm = 0; // Define 12 or 24 hour time. 0 = 24 hour. 1 = 12 hour

byte change_mode_time = 0; // Holds hour when clock mode will next change if in random mode.

unsigned long delaytime = 500; // We always wait a bit between updates of the display

int rtc[7]; // Holds real time clock output

char days[7][4] = {

“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”

}; //day array – used in slide, basic_mode and jumble modes (The DS1307 outputs 1-7 values for day of week)

char daysfull[7][9] = {

“Sunday”, “Monday”, “Tuesday”, “Wed”, “Thursday”, “Friday”, “Saturday”

};

char suffix[4][3] = {

“st”, “nd”, “rd”, “th”

}; //date suffix array, used in slide, basic_mode and jumble modes. e,g, 1st 2nd …

//define constants

#define NUM_DISPLAY_MODES 3 // Number display modes (conting zero as the first mode)

#define NUM_SETTINGS_MODES 4 // Number settings modes = 6 (conting zero as the first mode)

#define SLIDE_DELAY 20 // The time in milliseconds for the slide effect per character in slide mode. Make this higher for a slower effect

#define cls clear_display // Clear display

RTC_DS3231 ds3231; // Create RTC object

Button buttonA = Button(2, BUTTON_PULLUP); // Setup button A (using button library)

Button buttonB = Button(3, BUTTON_PULLUP); // Setup button B (using button library)

void setup() {

digitalWrite(2, HIGH); // turn on pullup resistor for button on pin 2

digitalWrite(3, HIGH); // turn on pullup resistor for button on pin 3

digitalWrite(4, HIGH); // turn on pullup resistor for button on pin 4

Serial.begin(9600); //start serial

//initialize the 4 matrix panels

//we have already set the number of devices when we created the LedControl

int devices = lc.getDeviceCount();

//we have to init all devices in a loop

for (int address = 0; address < devices; address++) {

/*The MAX72XX is in power-saving mode on startup*/

lc.shutdown(address, false);

/* Set the brightness to a medium values */

lc.setIntensity(address, intensity);

/* and clear the display */

lc.clearDisplay(address);

}

//Setup DS1307 RTC

#ifdef AVR

Wire.begin();

#else

Wire1.begin(); // Shield I2C pins connect to alt I2C bus on Arduino

#endif

ds3231.begin(); //start RTC Clock

if (! ds3231.begin()) {

Serial.println(“RTC is NOT running!”);

while (1);

//ds3231.adjust(DateTime(__DATE__, __TIME__)); // sets the RTC to the date & time this sketch was compiled

}

if (ds3231.lostPower()) {

//Sets the code compilation time to RTC DS3231

ds3231.adjust(DateTime(F(__DATE__), F(__TIME__)));

}

//Show software version & hello message

//printver();

//enable red led

//digitalWrite(13, HIGH);

}

void loop() {

//run the clock with whatever mode is set by clock_mode – the default is set at top of code.

switch (clock_mode){

case 0:

basic_mode();

break;

case 1:

small_mode();

break;

case 2:

slide();

break;

case 3:

word_clock();

break;

case 4:

setup_menu();

break;

}

}

//plot a point on the display

void plot (byte x, byte y, byte val) {

//select which matrix depending on the x coord

byte address;

if (x >= 0 && x <= 7) {

address = 3;

}

if (x >= 8 && x <= 15) {

address = 2;

x = x – 8;

}

if (x >= 16 && x <= 23) {

address = 1;

x = x – 16;

}

if (x >= 24 && x <= 31) {

address = 0;

x = x – 24;

}

if (val == 1) {

lc.setLed(address, y, x, true);

} else {

lc.setLed(address, y, x, false);

}

}

//clear screen

void clear_display() {

for (byte address = 0; address < 4; address++) {

lc.clearDisplay(address);

}

}

//fade screen down

void fade_down() {

//fade from global intensity to 1

for (byte i = intensity; i > 0; i–) {

for (byte address = 0; address < 4; address++) {

lc.setIntensity(address, i);

}

delay(30); //change this to change fade down speed

}

clear_display(); //clear display completely (off)

//reset intentsity to global val

for (byte address = 0; address < 4; address++) {

lc.setIntensity(address, intensity);

}

}

//power up led test & display software version number

void printver() {

byte i = 0;

char ver_a[9] = “Vers 1.0”;

char ver_b[9] = ” Hello! “;

//test all leds.

for (byte x = 0; x <= 31; x++) {

for (byte y = 0; y <= 7; y++) {

plot(x, y, 1);

}

}

delay(500);

fade_down();

while (ver_a[i]) {

puttinychar((i * 4), 1, ver_a[i]);

delay(35);

i++;

}

delay(700);

fade_down();

i = 0;

while (ver_b[i]) {

puttinychar((i * 4), 1, ver_b[i]);

delay(35);

i++;

}

delay(700);

fade_down();

}

// puttinychar

// Copy a 3×5 character glyph from the myfont data structure to display memory, with its upper left at the given coordinate

// This is unoptimized and simply uses plot() to draw each dot.

void puttinychar(byte x, byte y, char c)

{

byte dots;

if (c >= ‘A’ && c <= ‘Z’ || (c >= ‘a’ && c <= ‘z’) ) {

c &= 0x1F; // A-Z maps to 1-26

}

else if (c >= ‘0’ && c <= ‘9’) {

c = (c – ‘0’) + 32;

}

else if (c == ‘ ‘) {

c = 0; // space

}

else if (c == ‘.’) {

c = 27; // full stop

}

else if (c == ‘:’) {

c = 28; // colon

}

else if (c == ‘\”) {

c = 29; // single quote mark

}

else if (c == ‘!’) {

c = 30; // single quote mark

}

else if (c == ‘?’) {

c = 31; // single quote mark

}

for (byte col = 0; col < 3; col++) {

dots = pgm_read_byte_near(&mytinyfont[c][col]);

for (char row = 0; row < 5; row++) {

if (dots & (16 >> row))

plot(x + col, y + row, 1);

else

plot(x + col, y + row, 0);

}

}

}

void putnormalchar(byte x, byte y, char c)

{

byte dots;

// if (c >= ‘A’ && c <= ‘Z’ || (c >= ‘a’ && c <= ‘z’) ) {

// c &= 0x1F; // A-Z maps to 1-26

// }

if (c >= ‘A’ && c <= ‘Z’ ) {

c &= 0x1F; // A-Z maps to 1-26

}

else if (c >= ‘a’ && c <= ‘z’) {

c = (c – ‘a’) + 41; // A-Z maps to 41-67

}

else if (c >= ‘0’ && c <= ‘9’) {

c = (c – ‘0’) + 31;

}

else if (c == ‘ ‘) {

c = 0; // space

}

else if (c == ‘.’) {

c = 27; // full stop

}

else if (c == ‘\”) {

c = 28; // single quote mark

}

else if (c == ‘:’) {

c = 29; // clock_mode selector arrow

}

else if (c == ‘>’) {

c = 30; // clock_mode selector arrow

}

else if (c >= -80 && c <= -67) {

c *= -1;

}

for (char col = 0; col < 5; col++) {

dots = pgm_read_byte_near(&myfont[c][col]);

for (char row = 0; row < 7; row++) {

//check coords are on screen before trying to plot

//if ((x >= 0) && (x <= 31) && (y >= 0) && (y <= 7)){

if (dots & (64 >> row)) { // only 7 rows.

plot(x + col, y + row, 1);

} else {

plot(x + col, y + row, 0);

}

//}

}

}

}

//small_mode

//show the time in small 3×5 characters with seconds display

void small_mode() {

char textchar[8]; // the 16 characters on the display

byte mins = 100; //mins

byte secs = rtc[0]; //seconds

byte old_secs = secs; //holds old seconds value – from last time seconds were updated o display – used to check if seconds have changed

cls();

//run clock main loop as long as run_mode returns true

while (run_mode()) {

get_time();

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

return;

}

//if secs changed then update them on the display

secs = rtc[0];

if (secs != old_secs) {

//secs

char buffer[3];

itoa(secs, buffer, 10);

//fix – as otherwise if num has leading zero, e.g. “03” secs, itoa coverts this to chars with space “3 “.

if (secs < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

puttinychar( 20, 1, ‘:’); //seconds colon

puttinychar( 24, 1, buffer[0]); //seconds

puttinychar( 28, 1, buffer[1]); //seconds

old_secs = secs;

}

//if minute changes change time

if (mins != rtc[1]) {

//reset these for comparison next time

mins = rtc[1];

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

//byte dow = rtc[3]; // the DS1307 outputs 0 – 6 where 0 = Sunday0 – 6 where 0 = Sunday.

//byte date = rtc[4];

//set characters

char buffer[3];

itoa(hours, buffer, 10);

//fix – as otherwise if num has leading zero, e.g. “03” hours, itoa coverts this to chars with space “3 “.

if (hours < 10) {

buffer[1] = buffer[0];

//if we are in 12 hour mode blank the leading zero.

if (ampm) {

buffer[0] = ‘ ‘;

}

else {

buffer[0] = ‘0’;

}

}

//set hours chars

textchar[0] = buffer[0];

textchar[1] = buffer[1];

textchar[2] = ‘:’;

itoa (mins, buffer, 10);

if (mins < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//set mins characters

textchar[3] = buffer[0];

textchar[4] = buffer[1];

//do seconds

textchar[5] = ‘:’;

buffer[3];

secs = rtc[0];

itoa(secs, buffer, 10);

//fix – as otherwise if num has leading zero, e.g. “03” secs, itoa coverts this to chars with space “3 “.

if (secs < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//set seconds

textchar[6] = buffer[0];

textchar[7] = buffer[1];

byte x = 0;

byte y = 0;

//print each char

for (byte x = 0; x < 6 ; x++) {

puttinychar( x * 4, 1, textchar[x]);

}

}

delay(50);

}

fade_down();

}

// basic_mode()

// show the time in 5×7 characters

void basic_mode()

{

cls();

char buffer[3]; //for int to char conversion to turn rtc values into chars we can print on screen

byte offset = 0; //used to offset the x postition of the digits and centre the display when we are in 12 hour mode and the clock shows only 3 digits. e.g. 3:21

byte x, y; //used to draw a clear box over the left hand “1” of the display when we roll from 12:59 -> 1:00am in 12 hour mode.

//do 12/24 hour conversion if ampm set to 1

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

//do offset conversion

if (ampm && hours < 10) {

offset = 2;

}

//set the next minute we show the date at

//set_next_date();

// initially set mins to value 100 – so it wll never equal rtc[1] on the first loop of the clock, meaning we draw the clock display when we enter the function

byte secs = 100;

byte mins = 100;

int count = 0;

//run clock main loop as long as run_mode returns true

while (run_mode()) {

//get the time from the clock chip

get_time();

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

return;

}

//check whether it’s time to automatically display the date

//check_show_date();

//draw the flashing : as on if the secs have changed.

if (secs != rtc[0]) {

//update secs with new value

secs = rtc[0];

//draw :

plot (15 – offset, 2, 1); //top point

plot (15 – offset, 5, 1); //bottom point

count = 400;

}

//if count has run out, turn off the :

if (count == 0) {

plot (15 – offset, 2, 0); //top point

plot (15 – offset, 5, 0); //bottom point

}

else {

count–;

}

//re draw the display if button pressed or if mins != rtc[1] i.e. if the time has changed from what we had stored in mins, (also trigggered on first entering function when mins is 100)

if (mins != rtc[1]) {

//update mins and hours with the new values

mins = rtc[1];

hours = rtc[2];

//adjust hours of ampm set to 12 hour mode

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

itoa(hours, buffer, 10);

//if hours < 10 the num e.g. “3” hours, itoa coverts this to chars with space “3 ” which we dont want

if (hours < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//print hours

//if we in 12 hour mode and hours < 10, then don’t print the leading zero, and set the offset so we centre the display with 3 digits.

if (ampm && hours < 10) {

offset = 2;

//if the time is 1:00am clear the entire display as the offset changes at this time and we need to blank out the old 12:59

if ((hours == 1 && mins == 0) ) {

cls();

}

}

else {

//else no offset and print hours tens digit

offset = 0;

//if the time is 10:00am clear the entire display as the offset changes at this time and we need to blank out the old 9:59

if (hours == 10 && mins == 0) {

cls();

}

putnormalchar(1, 0, buffer[0]);

}

//print hours ones digit

putnormalchar(7 – offset, 0, buffer[1]);

//print mins

//add leading zero if mins < 10

itoa (mins, buffer, 10);

if (mins < 10) {

buffer[1] = buffer[0];

buffer[0] = ‘0’;

}

//print mins tens and ones digits

putnormalchar(19 – offset, 0, buffer[0]);

putnormalchar(25 – offset, 0, buffer[1]);

}

}

fade_down();

}

//like basic_mode but with slide effect

void slide() {

byte digits_old[4] = {99, 99, 99, 99}; //old values we store time in. Set to somthing that will never match the time initially so all digits get drawn wnen the mode starts

byte digits_new[4]; //new digits time will slide to reveal

byte digits_x_pos[4] = {25, 19, 7, 1}; //x pos for which to draw each digit at

char old_char[2]; //used when we use itoa to transpose the current digit (type byte) into a char to pass to the animation function

char new_char[2]; //used when we use itoa to transpose the new digit (type byte) into a char to pass to the animation function

//old_chars – stores the 5 day and date suffix chars on the display. e.g. “mon” and “st”. We feed these into the slide animation as the current char when these chars are updated.

//We sent them as A initially, which are used when the clocl enters the mode and no last chars are stored.

//char old_chars[6] = “AAAAA”;

//plot the clock colon on the display

cls();

putnormalchar( 13, 0, ‘:’);

byte old_secs = rtc[0]; //store seconds in old_secs. We compare secs and old secs. WHen they are different we redraw the display

//run clock main loop as long as run_mode returns true

while (run_mode()) {

get_time();

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

return;

}

//if secs have changed then update the display

if (rtc[0] != old_secs) {

old_secs = rtc[0];

//do 12/24 hour conversion if ampm set to 1

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

//split all date and time into individual digits – stick in digits_new array

//rtc[0] = secs //array pos and digit stored

//digits_new[0] = (rtc[0]%10); //0 – secs ones

//digits_new[1] = ((rtc[0]/10)%10); //1 – secs tens

//rtc[1] = mins

digits_new[0] = (rtc[1] % 10); //2 – mins ones

digits_new[1] = ((rtc[1] / 10) % 10); //3 – mins tens

//rtc[2] = hours

digits_new[2] = (hours % 10); //4 – hour ones

digits_new[3] = ((hours / 10) % 10); //5 – hour tens

//rtc[4] = date

//digits_new[6] = (rtc[4]%10); //6 – date ones

//digits_new[7] = ((rtc[4]/10)%10); //7 – date tens

//draw initial screen of all chars. After this we just draw the changes.

//compare digits 0 to 3 (mins and hours)

for (byte i = 0; i <= 3; i++) {

//see if digit has changed…

if (digits_old[i] != digits_new[i]) {

//run 9 step animation sequence for each in turn

for (byte seq = 0; seq <= 8 ; seq++) {

//convert digit to string

itoa(digits_old[i], old_char, 10);

itoa(digits_new[i], new_char, 10);

//if set to 12 hour mode and we’re on digit 2 (hours tens mode) then check to see if this is a zero. If it is, blank it instead so we get 2.00pm not 02.00pm

if (ampm && i == 3) {

if (digits_new[3] == 0) {

new_char[0] = ‘ ‘;

}

if (digits_old[3] == 0) {

old_char[0] = ‘ ‘;

}

}

//draw the animation frame for each digit

slideanim(digits_x_pos[i], 0, seq, old_char[0], new_char[0]);

delay(SLIDE_DELAY);

}

}

}

/*

//compare date digit 6 (ones) and (7) tens – if either of these change we need to update the date line. We compare date tens as say from Jan 31 -> Feb 01 then ones digit doesn’t change

if ((digits_old[6] != digits_new[6]) || (digits_old[7] != digits_new[7])) {

//change the day shown. Loop below goes through each of the 3 chars in turn e.g. “MON”

for (byte day_char = 0; day_char <=2 ; day_char++){

//run the anim sequence for each char

for (byte seq = 0; seq <=8 ; seq++){

//the day (0 – 6) Read this number into the days char array. the seconds number in the array 0-2 gets the 3 chars of the day name, e.g. m o n

slideanim(6*day_char,8,seq,old_chars[day_char],days[rtc[3]][day_char]); //6 x day_char gives us the x pos for the char

delay(SLIDE_DELAY);

}

//save the old day chars into the old_chars array at array pos 0-2. We use this next time we change the day and feed it to the animation as the current char. The updated char is fed in as the new char.

old_chars[day_char] = days[rtc[3]][day_char];

}

//change the date tens digit (if needed) and ones digit. (the date ones digit wil alwaus change, but putting this in the ‘if’ loop makes it a bit neater code wise.)

for (byte i = 7; i >= 6; i–){

if (digits_old[i] != digits_new[i]) {

for (byte seq = 0; seq <=8 ; seq++){

itoa(digits_old[i],old_char,10);

itoa(digits_new[i],new_char,10);

slideanim(digits_x_pos[i],8,seq,old_char[0],new_char[0]);

delay(SLIDE_DELAY);

}

}

}

//print the day suffix “nd” “rd” “th” etc. First work out date 2 letter suffix – eg st, nd, rd, th

byte s = 3; //the pos to read our suffix array from.

byte date = rtc[4];

if(date == 1 || date == 21 || date == 31) {

s = 0;

}

else if (date == 2 || date == 22) {

s = 1;

}

else if (date == 3 || date == 23) {

s = 2;

}

for (byte suffix_char = 0; suffix_char <=1 ; suffix_char++){

for (byte seq = 0; seq <=8 ; seq++){

slideanim((suffix_char*6)+36,8,seq,old_chars[suffix_char+3],suffix[s][suffix_char]); // we pass in the old_char array char as the current char and the suffix array as the new char

delay(SLIDE_DELAY);

}

//save the suffic char in the old chars array at array pos 3 and 5. We use these chars next time we change the suffix and feed it to the animation as the current char. The updated char is fed in as the new char.

old_chars[suffix_char+3] = suffix[s][suffix_char];

}

}//end do date line

*/

//save digita array tol old for comparison next loop

for (byte i = 0; i <= 3; i++) {

digits_old[i] = digits_new[i];

}

}//secs/oldsecs

}//while loop

fade_down();

}

//called by slide

//this draws the animation of one char sliding on and the other sliding off. There are 8 steps in the animation, we call the function to draw one of the steps from 0-7

//inputs are are char x and y, animation frame sequence (0-7) and the current and new chars being drawn.

void slideanim(byte x, byte y, byte sequence, char current_c, char new_c) {

// To slide one char off and another on we need 9 steps or frames in sequence…

// seq# 0123456 <-rows of the display

// | |||||||

// seq0 0123456 START – all rows of the display 0-6 show the current characters rows 0-6

// seq1 012345 current char moves down one row on the display. We only see it’s rows 0-5. There are at display positions 1-6 There is a blank row inserted at the top

// seq2 6 01234 current char moves down 2 rows. we now only see rows 0-4 at display rows 2-6 on the display. Row 1 of the display is blank. Row 0 shows row 6 of the new char

// seq3 56 0123

// seq4 456 012 half old / half new char

// seq5 3456 01

// seq6 23456 0

// seq7 123456

// seq8 0123456 END – all rows show the new char

//from above we can see…

//currentchar runs 0-6 then 0-5 then 0-4 all the way to 0. starting Y position increases by 1 row each time.

//new char runs 6 then 5-6 then 4-6 then 3-6. starting Y position increases by 1 row each time.

//if sequence number is below 7, we need to draw the current char

if (sequence < 7) {

byte dots;

// if (current_c >= ‘A’ && || (current_c >= ‘a’ && current_c <= ‘z’) ) {

// current_c &= 0x1F; // A-Z maps to 1-26

// }

if (current_c >= ‘A’ && current_c <= ‘Z’ ) {

current_c &= 0x1F; // A-Z maps to 1-26

}

else if (current_c >= ‘a’ && current_c <= ‘z’) {

current_c = (current_c – ‘a’) + 41; // A-Z maps to 41-67

}

else if (current_c >= ‘0’ && current_c <= ‘9’) {

current_c = (current_c – ‘0’) + 31;

}

else if (current_c == ‘ ‘) {

current_c = 0; // space

}

else if (current_c == ‘.’) {

current_c = 27; // full stop

}

else if (current_c == ‘\”) {

current_c = 28; // single quote mark

}

else if (current_c == ‘:’) {

current_c = 29; //colon

}

else if (current_c == ‘>’) {

current_c = 30; // clock_mode selector arrow

}

byte curr_char_row_max = 7 – sequence; //the maximum number of rows to draw is 6 – sequence number

byte start_y = sequence; //y position to start at – is same as sequence number. We inc this each loop

//plot each row up to row maximum (calculated from sequence number)

for (byte curr_char_row = 0; curr_char_row <= curr_char_row_max; curr_char_row++) {

for (byte col = 0; col < 5; col++) {

dots = pgm_read_byte_near(&myfont[current_c][col]);

if (dots & (64 >> curr_char_row))

plot(x + col, y + start_y, 1); //plot led on

else

plot(x + col, y + start_y, 0); //else plot led off

}

start_y++;//add one to y so we draw next row one down

}

}

//draw a blank line between the characters if sequence is between 1 and 7. If we don’t do this we get the remnants of the current chars last position left on the display

if (sequence >= 1 && sequence <= 8) {

for (byte col = 0; col < 5; col++) {

plot(x + col, y + (sequence – 1), 0); //the y position to draw the line is equivalent to the sequence number – 1

}

}

//if sequence is above 2, we also need to start drawing the new char

if (sequence >= 2) {

//work out char

byte dots;

//if (new_c >= ‘A’ && new_c <= ‘Z’ || (new_c >= ‘a’ && new_c <= ‘z’) ) {

// new_c &= 0x1F; // A-Z maps to 1-26

//}

if (new_c >= ‘A’ && new_c <= ‘Z’ ) {

new_c &= 0x1F; // A-Z maps to 1-26

}

else if (new_c >= ‘a’ && new_c <= ‘z’) {

new_c = (new_c – ‘a’) + 41; // A-Z maps to 41-67

}

else if (new_c >= ‘0’ && new_c <= ‘9’) {

new_c = (new_c – ‘0’) + 31;

}

else if (new_c == ‘ ‘) {

new_c = 0; // space

}

else if (new_c == ‘.’) {

new_c = 27; // full stop

}

else if (new_c == ‘\”) {

new_c = 28; // single quote mark

}

else if (new_c == ‘:’) {

new_c = 29; // clock_mode selector arrow

}

else if (new_c == ‘>’) {

new_c = 30; // clock_mode selector arrow

}

byte newcharrowmin = 6 – (sequence – 2); //minimumm row num to draw for new char – this generates an output of 6 to 0 when fed sequence numbers 2-8. This is the minimum row to draw for the new char

byte start_y = 0; //y position to start at – is same as sequence number. we inc it each row

//plot each row up from row minimum (calculated by sequence number) up to 6

for (byte newcharrow = newcharrowmin; newcharrow <= 6; newcharrow++) {

for (byte col = 0; col < 5; col++) {

dots = pgm_read_byte_near(&myfont[new_c][col]);

if (dots & (64 >> newcharrow))

plot(x + col, y + start_y, 1); //plot led on

else

plot(x + col, y + start_y, 0); //else plot led off

}

start_y++;//add one to y so we draw next row one down

}

}

}

//print a clock using words rather than numbers

void word_clock() {

cls();

char numbers[19][10] = {

“one”, “two”, “three”, “four”, “five”, “six”, “seven”, “eight”, “nine”, “ten”,

“eleven”, “twelve”, “thirteen”, “fourteen”, “fifteen”, “sixteen”, “seventeen”, “eighteen”, “nineteen”

};

char numberstens[5][7] = {

“ten”, “twenty”, “thirty”, “forty”, “fifty”

};

//potentially 3 lines to display

char str_a[8];

char str_b[8];

char str_c[8];

//byte hours_y, mins_y; //hours and mins and positions for hours and mins lines

byte hours = rtc[2];

if (hours > 12) {

hours = hours – ampm * 12;

}

if (hours < 1) {

hours = hours + ampm * 12;

}

get_time(); //get the time from the clock chip

byte old_mins = 100; //store mins in old_mins. We compare mins and old mins & when they are different we redraw the display. Set this to 100 initially so display is drawn when mode starts.

byte mins;

//run clock main loop as long as run_mode returns true

while (run_mode()) {

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

get_time(); //get the time from the clock chip

mins = rtc[1]; //get mins

//if mins is different from old_mins – redraw display

if (mins != old_mins) {

//update old_mins with current mins value

old_mins = mins;

//reset these for comparison next time

mins = rtc[1];

hours = rtc[2];

//make hours into 12 hour format

if (hours > 12) {

hours = hours – 12;

}

if (hours == 0) {

hours = 12;

}

//split mins value up into two separate digits

int minsdigit = rtc[1] % 10;

byte minsdigitten = (rtc[1] / 10) % 10;

//if mins <= 10 , then top line has to read “minsdigti past” and bottom line reads hours

if (mins < 10) {

strcpy (str_a, numbers[minsdigit – 1]);

strcpy (str_b, “PAST”);

strcpy (str_c, numbers[hours – 1]);

}

//if mins = 10, cant use minsdigit as above, so soecial case to print 10 past /n hour.

if (mins == 10) {

strcpy (str_a, numbers[9]);

strcpy (str_b, ” PAST”);

strcpy (str_c, numbers[hours – 1]);

}

//if time is not on the hour – i.e. both mins digits are not zero,

//then make first line read “hours” and 2 & 3rd lines read “minstens” “mins” e.g. “three /n twenty /n one”

else if (minsdigitten != 0 && minsdigit != 0 ) {

strcpy (str_a, numbers[hours – 1]);

//if mins is in the teens, use teens from the numbers array for the 2nd line, e.g. “fifteen”

//if (mins >= 11 && mins <= 19) {

if (mins <= 19) {

strcpy (str_b, numbers[mins – 1]);

}

else {

strcpy (str_b, numberstens[minsdigitten – 1]);

strcpy (str_c, numbers[minsdigit – 1]);

}

}

// if mins digit is zero, don’t print it. read read “hours” “minstens” e.g. “three /n twenty”

else if (minsdigitten != 0 && minsdigit == 0 ) {

strcpy (str_a, numbers[hours – 1]);

strcpy (str_b, numberstens[minsdigitten – 1]);

strcpy (str_c, “”);

}

//if both mins are zero, i.e. it is on the hour, the top line reads “hours” and bottom line reads “o’clock”

else if (minsdigitten == 0 && minsdigit == 0 ) {

strcpy (str_a, numbers[hours – 1]);

strcpy (str_b, “O’CLOCK”);

strcpy (str_c, “”);

}

}//end worknig out time

//run in a loop

//print line a “twelve”

byte len = 0;

while (str_a[len]) {

len++;

}; //get length of message

byte offset_top = (31 – ((len – 1) * 4)) / 2; //

//plot hours line

byte i = 0;

while (str_a[i]) {

puttinychar((i * 4) + offset_top, 1, str_a[i]);

i++;

}

//hold display but check for button presses

int counter = 1000;

while (counter > 0){

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

fade_down();

//print line b

len = 0;

while (str_b[len]) {

len++;

}; //get length of message

offset_top = (31 – ((len – 1) * 4)) / 2;

i = 0;

while (str_b[i]) {

puttinychar((i * 4) + offset_top, 1, str_b[i]);

i++;

}

//hold display but check for button presses

counter = 1000;

while (counter > 0){

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

fade_down();

//print line c if there.

len = 0;

while (str_c[len]) {

len++;

}; //get length of message

offset_top = (31 – ((len – 1) * 4)) / 2;

i = 0;

while (str_c[i]) {

puttinychar((i * 4) + offset_top, 1, str_c[i]);

i++;

}

counter = 1000;

while (counter > 0){

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

fade_down();

//hold display blank but check for button presses before starting again.

counter = 1000;

while (counter > 0){

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

}

fade_down();

}

/// scroll message – not used at present – too slow.

void scroll() {

char message[] = {“Hello There “};

cls();

byte p = 6; //current pos in string

byte chara[] = {0, 1, 2, 3, 4, 5}; //chars from string

int x[] = {0, 6, 12, 18, 24, 30}; //xpos for each char

byte y = 0; //y pos

// clear_buffer();

while (message[p] != ‘\0’) {

//draw all 6 chars

for (byte c = 0; c < 6; c++) {

putnormalchar(x[c],y,message[ chara[c] ]);

//draw a line of pixels turned off after each char,otherwise the gaps between the chars have pixels left in them from the previous char

for (byte yy = 0 ; yy < 8; yy ++) {

plot(x[c] + 5, yy, 0);

}

//take one off each chars position

x[c] = x[c] – 1;

}

//reset a char if it’s gone off screen

for (byte i = 0; i <= 5; i++) {

if (x[i] < -5 ) {

x[i] = 31;

chara[i] = p;

p++;

}

}

}

}

//display_date – print the day of week, date and month with a flashing cursor effect

void display_date()

{

cls();

//read the date from the DS1307

byte dow = rtc[3]; // day of week 0 = Sunday

byte date = rtc[4];

byte month = rtc[5] – 1;

//array of month names to print on the display. Some are shortened as we only have 8 characters across to play with

char monthnames[12][9] = {

“January”, “February”, “March”, “April”, “May”, “June”, “July”, “August”, “Sept”, “October”, “November”, “December”

};

//print the day name

//get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset

byte len = 0;

while(daysfull[dow][len]) {

len++;

};

byte offset = (31 – ((len-1)*4)) / 2; //our offset to centre up the text

//print the name

int i = 0;

while(daysfull[dow][i])

{

puttinychar((i*4) + offset , 1, daysfull[dow][i]);

i++;

}

delay(1000);

fade_down();

cls();

// print date numerals

char buffer[3];

itoa(date,buffer,10);

offset = 10; //offset to centre text if 3 chars – e.g. 3rd

// first work out date 2 letter suffix – eg st, nd, rd, th etc

// char suffix[4][3]={“st”, “nd”, “rd”, “th” }; is defined at top of code

byte s = 3;

if(date == 1 || date == 21 || date == 31) {

s = 0;

}

else if (date == 2 || date == 22) {

s = 1;

}

else if (date == 3 || date == 23) {

s = 2;

}

//print the 1st date number

puttinychar(0+offset, 1, buffer[0]);

//if date is under 10 – then we only have 1 digit so set positions of sufix etc one character nearer

byte suffixposx = 4;

//if date over 9 then print second number and set xpos of suffix to be 1 char further away

if (date > 9){

suffixposx = 8;

puttinychar(4+offset, 1, buffer[1]);

offset = 8; //offset to centre text if 4 chars

}

//print the 2 suffix characters

puttinychar(suffixposx+offset, 1, suffix[s][0]);

puttinychar(suffixposx+4+offset, 1, suffix[s][1]);

delay(1000);

fade_down();

//print the month name

//get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset

len = 0;

while(monthnames[month][len]) {

len++;

};

offset = (31 – ((len-1)*4)) / 2; //our offset to centre up the text

i = 0;

while(monthnames[month][i])

{

puttinychar((i*4) +offset, 1, monthnames[month][i]);

i++;

}

delay(1000);

fade_down();

}

//dislpay menu to change the clock mode

void switch_mode() {

//remember mode we are in. We use this value if we go into settings mode, so we can change back from settings mode (6) to whatever mode we were in.

old_mode = clock_mode;

char* modes[] = {

“Basic”, “Small”, “Slide”, “Words”, “Setup”

};

byte next_clock_mode;

byte firstrun = 1;

//loop waiting for button (timeout after 35 loops to return to mode X)

for (int count = 0; count < 35 ; count++) {

//if user hits button, change the clock_mode

if (buttonA.uniquePress() || firstrun == 1) {

count = 0;

cls();

if (firstrun == 0) {

clock_mode++;

}

if (clock_mode > NUM_DISPLAY_MODES + 1 ) {

clock_mode = 0;

}

//print arrown and current clock_mode name on line one and print next clock_mode name on line two

char str_top[9];

//strcpy (str_top, “-“);

strcpy (str_top, modes[clock_mode]);

next_clock_mode = clock_mode + 1;

if (next_clock_mode > NUM_DISPLAY_MODES + 1 ) {

next_clock_mode = 0;

}

byte i = 0;

while (str_top[i]) {

putnormalchar(i * 6, 0, str_top[i]);

i++;

}

firstrun = 0;

}

delay(50);

}

}

//run clock main loop as long as run_mode returns true

byte run_mode() {

//if random mode is on… check the hour when we change mode.

if (random_mode) {

//if hour value in change mode time = hours. then reurn false = i.e. exit mode.

if (change_mode_time == rtc[2]) {

//set the next random clock mode and time to change it

set_next_random();

//exit the current mode.

return 0;

}

}

//else return 1 – keep running in this mode

return 1;

}

//set the next hour the clock will change mode when random mode is on

void set_next_random() {

//set the next hour the clock mode will change – current time plus 1 – 4 hours

get_time();

change_mode_time = rtc[2] + random (1, 5);

//if change_mode_time now happens to be over 23, then set it to between 1 and 3am

if (change_mode_time > 23) {

change_mode_time = random (1, 4);

}

//set the new clock mode

clock_mode = random(0, NUM_DISPLAY_MODES + 1); //pick new random clock mode

}

//dislpay menu to change the clock settings

void setup_menu() {

char* set_modes[] = {

“Rndom”, “24 Hr”,”Set”, “Brght”, “Exit”};

if (ampm == 0) {

set_modes[1] = (“12 Hr”);

}

byte setting_mode = 0;

byte next_setting_mode;

byte firstrun = 1;

//loop waiting for button (timeout after 35 loops to return to mode X)

for(int count=0; count < 35 ; count++) {

//if user hits button, change the clock_mode

if(buttonA.uniquePress() || firstrun == 1){

count = 0;

cls();

if (firstrun == 0) {

setting_mode++;

}

if (setting_mode > NUM_SETTINGS_MODES) {

setting_mode = 0;

}

//print arrown and current clock_mode name on line one and print next clock_mode name on line two

char str_top[9];

strcpy (str_top, set_modes[setting_mode]);

next_setting_mode = setting_mode + 1;

if (next_setting_mode > NUM_SETTINGS_MODES) {

next_setting_mode = 0;

}

byte i = 0;

while(str_top[i]) {

putnormalchar(i*6, 0, str_top[i]);

i++;

}

firstrun = 0;

}

delay(50);

}

//pick the mode

switch(setting_mode){

case 0:

set_random();

break;

case 1:

set_ampm();

break;

case 2:

set_time();

break;

case 3:

set_intensity();

break;

case 4:

//exit menu

break;

}

//change the clock from mode 6 (settings) back to the one it was in before

clock_mode=old_mode;

}

//toggle random mode – pick a different clock mode every few hours

void set_random(){

cls();

char text_a[9] = “Off”;

char text_b[9] = “On”;

byte i = 0;

//if random mode is on, turn it off

if (random_mode){

//turn random mode off

random_mode = 0;

//print a message on the display

while(text_a[i]) {

putnormalchar((i*6), 0, text_a[i]);

i++;

}

} else {

//turn randome mode on.

random_mode = 1;

//set hour mode will change

set_next_random();

//print a message on the display

while(text_b[i]) {

putnormalchar((i*6), 0, text_b[i]);

i++;

}

}

delay(1500); //leave the message up for a second or so

}

//set 12 or 24 hour clock

void set_ampm() {

// AM/PM or 24 hour clock mode – flip the bit (makes 0 into 1, or 1 into 0 for ampm mode)

ampm = (ampm ^ 1);

cls();

}

//change screen intensityintensity

void set_intensity() {

cls();

byte i = 0;

char text[7] = “Bright”;

while(text[i]) {

puttinychar((i*4)+4, 0, text[i]);

i++;

}

//wait for button input

while (!buttonA.uniquePress()) {

levelbar (0,6,(intensity*2)+2,2); //display the intensity level as a bar

while (buttonB.isPressed()) {

if(intensity == 15) {

intensity = 0;

cls ();

}

else {

intensity++;

}

//print the new value

i = 0;

while(text[i]) {

puttinychar((i*4)+4, 0, text[i]);

i++;

}

//display the intensity level as a bar

levelbar (0,6,(intensity*2)+2,2);

//change the brightness setting on the displays

for (byte address = 0; address < 4; address++) {

lc.setIntensity(address, intensity);

}

delay(150);

}

}

}

// display a horizontal bar on the screen at offset xposr by ypos with height and width of xbar, ybar

void levelbar (byte xpos, byte ypos, byte xbar, byte ybar) {

for (byte x = 0; x < xbar; x++) {

for (byte y = 0; y <= ybar; y++) {

plot(x+xpos, y+ypos, 1);

}

}

}

//set time and date routine

void set_time() {

cls();

//fill settings with current clock values read from clock

get_time();

byte set_min = rtc[1];

byte set_hr = rtc[2];

byte set_date = rtc[4];

byte set_mnth = rtc[5];

int set_yr = rtc[6];

//Set function – we pass in: which ‘set’ message to show at top, current value, reset value, and rollover limit.

set_date = set_value(2, set_date, 1, 31);

set_mnth = set_value(3, set_mnth, 1, 12);

set_yr = set_value(4, set_yr, 2013, 2099);

set_hr = set_value(1, set_hr, 0, 23);

set_min = set_value(0, set_min, 0, 59);

ds3231.adjust(DateTime(set_yr, set_mnth, set_date, set_hr, set_min));

cls();

}

//used to set min, hr, date, month, year values. pass

//message = which ‘set’ message to print,

//current value = current value of property we are setting

//reset_value = what to reset value to if to rolls over. E.g. mins roll from 60 to 0, months from 12 to 1

//rollover limit = when value rolls over

int set_value(byte message, int current_value, int reset_value, int rollover_limit){

cls();

char messages[6][17] = {

“Set Mins”, “Set Hour”, “Set Day”, “Set Mnth”, “Set Year”};

//Print “set xyz” top line

byte i = 0;

while(messages[message][i])

{

puttinychar(i*4 , 1, messages[message][i]);

i++;

}

delay(2000);

cls();

//print digits bottom line

char buffer[5] = ” “;

itoa(current_value,buffer,10);

puttinychar(0 , 1, buffer[0]);

puttinychar(4 , 1, buffer[1]);

puttinychar(8 , 1, buffer[2]);

puttinychar(12, 1, buffer[3]);

delay(300);

//wait for button input

while (!buttonA.uniquePress()) {

while (buttonB.isPressed()){

if(current_value < rollover_limit) {

current_value++;

}

else {

current_value = reset_value;

}

//print the new value

itoa(current_value, buffer ,10);

puttinychar(0 , 1, buffer[0]);

puttinychar(4 , 1, buffer[1]);

puttinychar(8 , 1, buffer[2]);

puttinychar(12, 1, buffer[3]);

delay(150);

}

}

return current_value;

}

void get_time()

{

//get time

DateTime now = ds3231.now();

//save time to array

rtc[6] = now.year();

rtc[5] = now.month();

rtc[4] = now.day();

rtc[3] = now.dayOfTheWeek(); //returns 0-6 where 0 = Sunday

rtc[2] = now.hour();

rtc[1] = now.minute();

rtc[0] = now.second();

//flash arduino led on pin 13 every second

//if ( (rtc[0] % 2) == 0) {

// digitalWrite(13, HIGH);

//}

//else {

// digitalWrite(13, LOW);

//}

//print the time to the serial port – useful for debuging RTC issues

/*

Serial.print(rtc[2]);

Serial.print(“:”);

Serial.print(rtc[1]);

Serial.print(“:”);

Serial.println(rtc[0]);

*/

}

while (counter > 0){

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

fade_down();

//hold display blank but check for button presses before starting again.

counter = 1000;

while (counter > 0){

//check for button press

if (buttonA.uniquePress()) {

switch_mode();

return;

}

if (buttonB.uniquePress()) {

display_date();

}

delay(1);

counter–;

}

}

fade_down();

}

/// scroll message – not used at present – too slow.

void scroll() {

char message[] = {“Hello There “};

cls();

byte p = 6; //current pos in string

byte chara[] = {0, 1, 2, 3, 4, 5}; //chars from string

int x[] = {0, 6, 12, 18, 24, 30}; //xpos for each char

byte y = 0; //y pos

// clear_buffer();

while (message[p] != ‘\0’) {

//draw all 6 chars

for (byte c = 0; c < 6; c++) {

putnormalchar(x[c],y,message[ chara[c] ]);

//draw a line of pixels turned off after each char,otherwise the gaps between the chars have pixels left in them from the previous char

for (byte yy = 0 ; yy < 8; yy ++) {

plot(x[c] + 5, yy, 0);

}

//take one off each chars position

x[c] = x[c] – 1;

}

//reset a char if it’s gone off screen

for (byte i = 0; i <= 5; i++) {

if (x[i] < -5 ) {

x[i] = 31;

chara[i] = p;

p++;

}

}

}

}

//display_date – print the day of week, date and month with a flashing cursor effect

void display_date()

{

cls();

//read the date from the DS1307

byte dow = rtc[3]; // day of week 0 = Sunday

byte date = rtc[4];

byte month = rtc[5] – 1;

//array of month names to print on the display. Some are shortened as we only have 8 characters across to play with

char monthnames[12][9] = {

“January”, “February”, “March”, “April”, “May”, “June”, “July”, “August”, “Sept”, “October”, “November”, “December”

};

//print the day name

//get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset

byte len = 0;

while(daysfull[dow][len]) {

len++;

};

byte offset = (31 – ((len-1)*4)) / 2; //our offset to centre up the text

//print the name

int i = 0;

while(daysfull[dow][i])

{

puttinychar((i*4) + offset , 1, daysfull[dow][i]);

i++;

}

delay(1000);

fade_down();

cls();

// print date numerals

char buffer[3];

itoa(date,buffer,10);

offset = 10; //offset to centre text if 3 chars – e.g. 3rd

// first work out date 2 letter suffix – eg st, nd, rd, th etc

// char suffix[4][3]={“st”, “nd”, “rd”, “th” }; is defined at top of code

byte s = 3;

if(date == 1 || date == 21 || date == 31) {

s = 0;

}

else if (date == 2 || date == 22) {

s = 1;

}

else if (date == 3 || date == 23) {

s = 2;

}

//print the 1st date number

puttinychar(0+offset, 1, buffer[0]);

//if date is under 10 – then we only have 1 digit so set positions of sufix etc one character nearer

byte suffixposx = 4;

//if date over 9 then print second number and set xpos of suffix to be 1 char further away

if (date > 9){

suffixposx = 8;

puttinychar(4+offset, 1, buffer[1]);

offset = 8; //offset to centre text if 4 chars

}

//print the 2 suffix characters

puttinychar(suffixposx+offset, 1, suffix[s][0]);

puttinychar(suffixposx+4+offset, 1, suffix[s][1]);

delay(1000);

fade_down();

//print the month name

//get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset

len = 0;

while(monthnames[month][len]) {

len++;

};

offset = (31 – ((len-1)*4)) / 2; //our offset to centre up the text

i = 0;

while(monthnames[month][i])

{

puttinychar((i*4) +offset, 1, monthnames[month][i]);

i++;

}

delay(1000);

fade_down();

}

//dislpay menu to change the clock mode

void switch_mode() {

//remember mode we are in. We use this value if we go into settings mode, so we can change back from settings mode (6) to whatever mode we were in.

old_mode = clock_mode;

char* modes[] = {

“Basic”, “Small”, “Slide”, “Words”, “Setup”

};

byte next_clock_mode;

byte firstrun = 1;

//loop waiting for button (timeout after 35 loops to return to mode X)

for (int count = 0; count < 35 ; count++) {

//if user hits button, change the clock_mode

if (buttonA.uniquePress() || firstrun == 1) {

count = 0;

cls();

if (firstrun == 0) {

clock_mode++;

}

if (clock_mode > NUM_DISPLAY_MODES + 1 ) {

clock_mode = 0;

}

//print arrown and current clock_mode name on line one and print next clock_mode name on line two

char str_top[9];

//strcpy (str_top, “-“);

strcpy (str_top, modes[clock_mode]);

next_clock_mode = clock_mode + 1;

if (next_clock_mode > NUM_DISPLAY_MODES + 1 ) {

next_clock_mode = 0;

}

byte i = 0;

while (str_top[i]) {

putnormalchar(i * 6, 0, str_top[i]);

i++;

}

firstrun = 0;

}

delay(50);

}

}

//run clock main loop as long as run_mode returns true

byte run_mode() {

//if random mode is on… check the hour when we change mode.

if (random_mode) {

//if hour value in change mode time = hours. then reurn false = i.e. exit mode.

if (change_mode_time == rtc[2]) {

//set the next random clock mode and time to change it

set_next_random();

//exit the current mode.

return 0;

}

}

//else return 1 – keep running in this mode

return 1;

}

//set the next hour the clock will change mode when random mode is on

void set_next_random() {

//set the next hour the clock mode will change – current time plus 1 – 4 hours

get_time();

change_mode_time = rtc[2] + random (1, 5);

//if change_mode_time now happens to be over 23, then set it to between 1 and 3am

if (change_mode_time > 23) {

change_mode_time = random (1, 4);

}

//set the new clock mode

clock_mode = random(0, NUM_DISPLAY_MODES + 1); //pick new random clock mode

}

//dislpay menu to change the clock settings

void setup_menu() {

char* set_modes[] = {

“Rndom”, “24 Hr”,”Set”, “Brght”, “Exit”};

if (ampm == 0) {

set_modes[1] = (“12 Hr”);

}

byte setting_mode = 0;

byte next_setting_mode;

byte firstrun = 1;

//loop waiting for button (timeout after 35 loops to return to mode X)

for(int count=0; count < 35 ; count++) {

//if user hits button, change the clock_mode

if(buttonA.uniquePress() || firstrun == 1){

count = 0;

cls();

if (firstrun == 0) {

setting_mode++;

}

if (setting_mode > NUM_SETTINGS_MODES) {

setting_mode = 0;

}

//print arrown and current clock_mode name on line one and print next clock_mode name on line two

char str_top[9];

strcpy (str_top, set_modes[setting_mode]);

next_setting_mode = setting_mode + 1;

if (next_setting_mode > NUM_SETTINGS_MODES) {

next_setting_mode = 0;

}

byte i = 0;

while(str_top[i]) {

putnormalchar(i*6, 0, str_top[i]);

i++;

}

firstrun = 0;

}

delay(50);

}

//pick the mode

switch(setting_mode){

case 0:

set_random();

break;

case 1:

set_ampm();

break;

case 2:

set_time();

break;

case 3:

set_intensity();

break;

case 4:

//exit menu

break;

}

//change the clock from mode 6 (settings) back to the one it was in before

clock_mode=old_mode;

}

//toggle random mode – pick a different clock mode every few hours

void set_random(){

cls();

char text_a[9] = “Off”;

char text_b[9] = “On”;

byte i = 0;

//if random mode is on, turn it off

if (random_mode){

//turn random mode off

random_mode = 0;

//print a message on the display

while(text_a[i]) {

putnormalchar((i*6), 0, text_a[i]);

i++;

}

} else {

//turn randome mode on.

random_mode = 1;

//set hour mode will change

set_next_random();

//print a message on the display

while(text_b[i]) {

putnormalchar((i*6), 0, text_b[i]);

i++;

}

}

delay(1500); //leave the message up for a second or so

}

//set 12 or 24 hour clock

void set_ampm() {

// AM/PM or 24 hour clock mode – flip the bit (makes 0 into 1, or 1 into 0 for ampm mode)

ampm = (ampm ^ 1);

cls();

}

//change screen intensityintensity

void set_intensity() {

cls();

byte i = 0;

char text[7] = “Bright”;

while(text[i]) {

puttinychar((i*4)+4, 0, text[i]);

i++;

}

//wait for button input

while (!buttonA.uniquePress()) {

levelbar (0,6,(intensity*2)+2,2); //display the intensity level as a bar

while (buttonB.isPressed()) {

if(intensity == 15) {

intensity = 0;

cls ();

}

else {

intensity++;

}

//print the new value

i = 0;

while(text[i]) {

puttinychar((i*4)+4, 0, text[i]);

i++;

}

//display the intensity level as a bar

levelbar (0,6,(intensity*2)+2,2);

//change the brightness setting on the displays

for (byte address = 0; address < 4; address++) {

lc.setIntensity(address, intensity);

}

delay(150);

}

}

}

// display a horizontal bar on the screen at offset xposr by ypos with height and width of xbar, ybar

void levelbar (byte xpos, byte ypos, byte xbar, byte ybar) {

for (byte x = 0; x < xbar; x++) {

for (byte y = 0; y <= ybar; y++) {

plot(x+xpos, y+ypos, 1);

}

}

}

//set time and date routine

void set_time() {

cls();

//fill settings with current clock values read from clock

get_time();

byte set_min = rtc[1];

byte set_hr = rtc[2];

byte set_date = rtc[4];

byte set_mnth = rtc[5];

int set_yr = rtc[6];

//Set function – we pass in: which ‘set’ message to show at top, current value, reset value, and rollover limit.

set_date = set_value(2, set_date, 1, 31);

set_mnth = set_value(3, set_mnth, 1, 12);

set_yr = set_value(4, set_yr, 2013, 2099);

set_hr = set_value(1, set_hr, 0, 23);

set_min = set_value(0, set_min, 0, 59);

ds3231.adjust(DateTime(set_yr, set_mnth, set_date, set_hr, set_min));

cls();

}

//used to set min, hr, date, month, year values. pass

//message = which ‘set’ message to print,

//current value = current value of property we are setting

//reset_value = what to reset value to if to rolls over. E.g. mins roll from 60 to 0, months from 12 to 1

//rollover limit = when value rolls over

int set_value(byte message, int current_value, int reset_value, int rollover_limit){

cls();

char messages[6][17] = {

“Set Mins”, “Set Hour”, “Set Day”, “Set Mnth”, “Set Year”};

//Print “set xyz” top line

byte i = 0;

while(messages[message][i])

{

puttinychar(i*4 , 1, messages[message][i]);

i++;

}

delay(2000);

cls();

//print digits bottom line

char buffer[5] = ” “;

itoa(current_value,buffer,10);

puttinychar(0 , 1, buffer[0]);

puttinychar(4 , 1, buffer[1]);

puttinychar(8 , 1, buffer[2]);

puttinychar(12, 1, buffer[3]);

delay(300);

//wait for button input

while (!buttonA.uniquePress()) {

while (buttonB.isPressed()){

if(current_value < rollover_limit) {

current_value++;

}

else {

current_value = reset_value;

}

//print the new value

itoa(current_value, buffer ,10);

puttinychar(0 , 1, buffer[0]);

puttinychar(4 , 1, buffer[1]);

puttinychar(8 , 1, buffer[2]);

puttinychar(12, 1, buffer[3]);

delay(150);

}

}

return current_value;

}

void get_time()

{

//get time

DateTime now = ds3231.now();

//save time to array

rtc[6] = now.year();

rtc[5] = now.month();

rtc[4] = now.day();

rtc[3] = now.dayOfTheWeek(); //returns 0-6 where 0 = Sunday

rtc[2] = now.hour();

rtc[1] = now.minute();

rtc[0] = now.second();

//flash arduino led on pin 13 every second

//if ( (rtc[0] % 2) == 0) {

// digitalWrite(13, HIGH);

//}

//else {

// digitalWrite(13, LOW);

//}

//print the time to the serial port – useful for debuging RTC issues

/*

Serial.print(rtc[2]);

Serial.print(“:”);

Serial.print(rtc[1]);

Serial.print(“:”);

Serial.println(rtc[0]);

*/

}

DS3231 matrix

One thought on “DS3231 DIGITAL CLOCK LED MATRIX

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s